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An experimental study of the residual stress formation and evolution in �-titanium-based composite
material was completed for some important processing and heat treatment conditions. A concentric cyl-
inder model based on Norton’s creep law with the coefficients replaced by new terms related to time and
temperature was developed by a combination of viscoplasticity and thermoelastic analysis of concentric
cylinder domains representative for the matrix and the fiber. The x-ray diffraction (XRD) technique was
used to measure average residual stresses at the neighborhood of Saphikon fibers. The composite was
fabricated by hot isostatic pressing. The residual stress at the matrix decreased as the temperature of the
heat treatment increased up to an optimum value, after which the residual stress started to build up despite
the increase in the annealing temperature. This phenomenon was depicted through the numerical model
as well as in the XRD.
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1. Introduction

Metal matrix composites (MMCs) with improved mechani-
cal properties at elevated temperature and high strength and
moduli have emerged as an important class of materials. The
introduction of a wide variety of new fibers such as alumina
and Saphikon (alumina is polycrystalline Al2O3, whereas
Saphikon is a single-crystal monofilament developmental ce-
ramic fiber, �-Al2O3 with 100% purity Al2O3; Saphikon Inc.,
Milford, NH), SiC, or Al2O3-SiO2, has made it possible to
fabricate reinforced light metal matrix composites. Titanium
aluminide (�-TiAl)-based alloys are potentially very attractive
low-density, high-strength materials for use at elevated tem-
peratures. TiAl systems offer great potential for weight saving
in the hot sections of jet engines.[1] The higher strength-to-
weight ratio of titanium (Ti), coupled with good corrosion re-
sistance and excellent ballistic protection, spurred interest in
General Dynamic Land Systems (Sterling Heights, MI) U.S.
army constructors, to upscale blow-off panels of the M1
Abrams main battle tank.[2] Like most intermetallics, this TiAl
alloy suffers from low ductility and fracture toughness at am-
bient temperatures. Saphikon is thermodynamically stable in
TiAl, and its coefficient of thermal expansion closely matches

that of TiAl. Observations revealing Saphikon as a good po-
tential reinforcement in TiAl were discussed in Ref. 3.

The processing of MMCs requires that the matrix and the
reinforcement material be brought together at elevated tem-
perature followed by cooling to room temperature. Because of
a mismatch in the coefficients of thermal expansion between
the matrix and fibers, changes in temperature produce residual
stresses in the composite. These thermal stresses may be par-
tially relaxed by the plastic deformation of the ductile matrix
and lead to additional hardening of the matrix in the composite.
Because thermal effects are induced before mechanical testing,
their presence can induce the asymmetry in the tensile and
compressive yield stresses of the composite.[4]

Because of its influence on the properties of the composite,
residual stresses have been the subject of numerous experimen-
tal and theoretical studies. Several analyses of residual stresses
have been carried out, both experimentally using x-ray diffrac-
tion (XRD)[5,6] and neutron diffraction,[7,8] and theoretically by
computer simulation. Most of the theoretical works are based
on the Eshelby model.[9] This method was introduced in the
early 1960s and has since then been successfully applied by
numerous researchers to two-phase systems. Finite element
modeling emerged as an appropriate technique to predict the
residual stress state in MMCs. This approach was used by
Rangswamy et al.[7] to predict the residual stress in Ti matrix
composite.

Practically, all of the measurements of the residual stresses
have been made at room temperature. Because many MMCs
are intended for service at elevated temperatures, the residual
stresses and their change during typical service conditions at
elevated temperatures need to be investigated. In-service ther-
mal cycling may change the residual stress state and thus in-
fluence the performance of a component made from MMC
materials. Despite the literature describing modeling the fiber-
matrix interphase, little was reported about minimizing the re-
sidual thermal stresses in MMC materials through different
time-temperature cycles, which is the issue addressed in this
article.
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2. Theoretical Analysis

Some of the early approaches to study the response of com-
posite materials at the micromechanics level were based on
classic elastic-plastic solutions. The elasticity formulation for a
variety of loading conditions on solid and hollow cylinders for
an isotropic material was established by the previous work of
St. Venant.[10] The anisotropic elasticity solution was demon-
strated by Avery et al.[11] Theoretical investigation of the stress
in a long, hollow, circular cylinder subjected to rapid cooling of
the exterior surface was carried out by Jahanian et al.,[12] where
a quasi-static uncoupled thermoplastic analysis based on incre-
mental theory of plasticity was developed and a numerical
procedure for successive approximation was formulated. The
authors assumed that the material had temperature dependent
properties and was characterized by linear strain hardening.

The concentric cylinder assemblage model was proposed by
Hashin and Rosen.[13] In this model, a unidirectional continuous
fiber composite is represented by an assemblage of concentric
cylinders, each consisting of a fiber core surrounded by a matrix
annulus. The composite cylinder assemblage model was chosen
for this study because of its ability to predict effective composite
properties by analyzing a single composite cylinder rather than
studying the details of the stress at the fiber-matrix interface.

In this model a composite is considered to be an assemblage of
composite cylinders. Each cylinder is composed of a circular fiber
of radius (a) surrounded by a matrix annulus of radius (b), and the
volume of the composite is filled with these composite cylinders,
such that each one has the same ratio (a/b)2. This ratio represents
the volume fraction of fibers in the composite, such that the entire
volume of the composite is filled with nonoverlapping composite
cylinders.[14] In the proposed model, two infinitely long concen-
tric cylinders simulate the continuous fiber composite. A cylin-
drical coordinate system (r, �, z) is assumed, with z as the axial
coordinate and r − � as the transverse plane. The initial uniform
temperature of the cylinder is assumed to be To, which is below
the phase transition temperature. In addition, it is assumed that the
body forces and the surface tractions are absent. The composite is
assumed to be unidirectional with continuous fibers, the fiber is
linearly viscoelastic and the matrix is elastic-viscoplastic, the tem-
perature change is uniform in all the phases, and the bonding
between phases is perfect. The analysis presented here is based on
the work of Mendelson,[15] Jahanian,[12] Jayaraman,[16] and Fab-
ney.[17]

For the proposed composite cylinder model shown in Fig. 1,
it is appropriate to assume a plane strain condition �z � 0,
together with the Tresca criterion and its associated flow rule.
It will be assumed that �� > �z > �r .[15]

The following dimensionless quantities are defined:

Sr =
�r

�o
, S� =

��

�o
, Sz =

�z

�o
, S = S� − Sr

� =
r

a
, � =

b

a
, � =

E�To

�1 + v��o

(Eq 1)

where a and b are the internal and external radii for the eccen-

tric cylinder; E is the elastic modulus; �o and �o are the yield
stress and strain of the matrix, respectively; and � is the coef-
ficient of thermal expansion.

Tresca yield criterion for the plane strain assumption will be

S = S� − Sr = 1.0 (Eq 2)

Norton’s law is chosen here as the constitutive law that corre-
lates the stresses and the corresponding plastic strain rates in
the creeping matrix as a function of time and temperature

d�p

dt
= Kc ���n exp

−Q

RT
⇒ 	�p = BSn	t (Eq 3)

where Kc is the creep rate/h, n is the creep exponent, Q is
activation energy kJ/mol, R is the gas constant, and T is the
absolute temperature in Ko. For simplicity, the variable B ac-
counts for the term Kc exp (–Q/RT). The boundary conditions
had been introduced in the model by taking both a stress-free
outer surface, and a prescribed displacement and radial stress at
the interface as imposed by the fiber and matrix coefficients of
thermal expansion �f and �m, respectively. By eliminating �z

and using the dimensionless stress-strain quantities, the equi-
librium equation can be written as

dS

d�
+ 2�1 − v�

S

�
−

1

v �v + 1�
�d��

d�
− 2

�r
p

�
� = 0 (Eq 4)

Taking the derivative of Eq 4 with respect to time

Fig. 1 Concentric cylinder model
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Substituting Eq 5 into Eq 4, and denoting dS/d� by Ṡ
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Let B̈ � {(2Ḃ	t)/[
(1 + 
)]}, then Eq 6 can be simplified as

S
.
�1 − B̈nSn−1� =

2

�
��1 − v�S − B̈Sn�� (Eq 7)

Introducing new terms

�0 = B̈Sn −
2�1 − v�

�
S →

d�

dS
= nB̈Sn−1 − 2
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�
(Eq 8)

Let �0 � BS0
n − S0, where S0 is the initial normalized stress

�1 − v� S = B̈S0
n − �0��0

� �2

(Eq 9)

Then, for elastic solution (at the fiber domain) B̈ � 0 and �0

= S0, and

Se = S0 ��0

� �2

(Eq 10)

where Se is the elastic part of the total normalized stress; S =
Se + S0. Initially S0 << Se so we can assume

S = Se given that: S0 ≈ B̈Se
n (Eq 11)

Applying this approximation to Eq 9

S ≅
1

1 − v �−�0 ��0

� �2

+ B̈Se
n ��0

� �2n� (Eq 12)

Or in a differential form

dSr =
1

1 − v
�−�0�0

2�−3 + B̈S0
n�0

2n�−2n−1� d � (Eq 13)

Solving this ordinary differential equation with the boundary
condition: Sr(�)�→� � 0,

Sr��� =
1

2�1 − v� ��0��0

� �2

− B̈S0
n��0

� �2n� (Eq 14)

Similarly, for S�

S���� =
1

2�1 − v� ��0��0

� �2

+ �1 −
1

2n� B̈S0
n��0

� �2n� (Eq 15)

The set of Eq 14 and 15 was used to calculate the residual stress
for the composite after thermal cycling for the desired time
periods. Both time and temperature were incorporated in this
model via the terms �0 and B̈.

The properties of the Saphikon fibers were provided by the
manufacturer (Saphikon Inc., through McDonnell Douglas).
However, because this is a developmental fiber, the properties
vary according to the filament size and purity of Al2O3, as
listed in Ref. 18. The �-TiAl properties are referenced by
Kim.[19] Some parameters were measured (radius of fiber) and
others were proposed for modeling (Norton’s exponent). A
summary of the materials parameters used for the simulation is
provided in Table 1.

3. Materials and Experimental

A Ti-47Al-2Ta matrix composite reinforced with Saphikon
was used in this investigation. The Saphikon fibers had an
average diameter of 184 m. The composite material was fab-
ricated at the McDonnell Douglas Research Center using hot
isostatic pressing of powdered matrix material over the differ-
ent fiber types. Prealloyed Ti-47Al-2Ta powders were milled.
All powder handling and milling operations were carried out in
argon glove boxes and Ti-lined vials to minimize contamina-
tion. No process control agents were used in any milling op-
eration to remove this source of interstitial contamination. Be-
cause of the large quantities of powder milled, this material
was sealed in Ti-3AL-2.5V (wt.%) tube 6.35 mm in diameter.
The tube was electron beam welded at one end. The selected
fibers were dropped in through the open end and the remaining
space filled with a powder of the matrix material. When the
tube was full, the other end was electron beam welded and the
material was hot isostatically pressed in vacuum and at 1200
°C. The tubes were sectioned into pieces and each piece was
encapsulated in quartz for the heat treatment. The composites
were heat treated at 593, 815, and 982 °C for 100, 200, and 500
h at each temperature, followed by cooling to room tempera-
ture.

The most widely used nondestructive technique for measur-

Table 1 Values of the Parameters Used for Model
Simulation

Quantity Symbol Value

Outside diameter of cylinder model b 250 m
Radius of the fiber a 184.3 m
Activation energy for the matrix Q 310 KJ/mole
Norton’s exponent for creep n 5
Matrix Young’s modules Em 170 GPa
Fiber Young’s modulus Ef 470 GPa
Matrix Poisson’s ratio vm 0.3
Fiber Poisson’s ratio vf 0.4
Matrix thermal expansion coefficient am 10.6 × 10−6/°C
Fiber thermal expansion coefficient af 9 × 10−6/°C
Yield stress of the matrix �o 600 MPa

532—Volume 11(5) October 2002 Journal of Materials Engineering and Performance



ing residual stress is XRD.[5,6,7,20] This is a well-established
method for the determination of residual stresses in polycrys-
talline materials, producing a very good measure of the stresses
on the surface of the material. The method of XRD depends on
the interplane spacing. The interplane spacing becomes a gauge
length, which is altered proportionally by elastic stresses. The
stresses produce an alteration in interplane spacing, which is
divided by the original spacing to become an elastic unit strain
that can be interpreted in terms of the corresponding stress.
When a material is scanned using XRD, the result is a measure
of the intensity of the incident beam at each value of angle �
measured between the incident beam and the planes of atoms.
The peaks of the intensity 2� scan indicate the location of
certain atomic planes in the material using Bragg’s law:

m� = 2d sin �

where m is called the order of reflection, and is equal to the
number of wavelengths in the path difference between rays
scattered by the adjacent planes, � is the wavelength of the
radiation, and d is the inter atomic spacing.

The x-ray coordinate system is shown in Fig. 2. The axis Si

defines the surface of the sample, with S3 normal to this sur-
face. The laboratory axis Li is defined such that L3 is normal to
the family of planes {hkl}, the spacing of which is measured by
x-rays. L2 is in the plane defined by S1 and S2 and makes an
angle � with S2, whereas S3 makes angle � with L3.[6]

The fundamental equation of x-ray strain determination is
given as[6]

��33
� ��� =

d�� − d0

d0
(16)

In this equation, (��33)�� is the strain along L3, d�� is the lattice
spacing obtained from the position of the diffraction peak for a
given hkl, and do is the unstressed lattice spacing. The angle �
is the rotation angle and � is the tilt angle.

The strain ��33�� may also be expressed in terms of the
strain �ij in the sample coordinate system by tensor transfor-
mation (��33)�� � A3kA3lAkl, where A3k and A3l are the direc-
tion cosines between L3 and Sk, S1 respectively. Substituting for
A3k in A3l,

[6]

��33
� ��� = �11 cos2 � sin2 � + �12 sin 2� sin2 �

+ �22 sin2 � sin2 � + �33 cos2 � + �13 cos � sin 2�
+ �23 sin � sin 2� (Eq 17)

The subscripts 1 and 2 denote strains in the surface plane,
whereas 3 indicates strains perpendicular to the surface plane.
Equation 17 is a linear equation in six unknowns (�11, �22, . . . ,
�33) that can be solved by measuring d�� along six independent
directions (L33)��. Following the analysis of Noyan,[6]

Dolle,[21,22] and Macherauch,[23] the behavior of d versus sin2

� is observed. Defining the parameters a1 and a2

a1 =
d��+ + d��−

2d0
− 1

= ��11 cos2 � + �12 sin 2� + �22 sin2 � − �33� sin2 � + �33

a2 =
d��+ − d��−

2d0

= ��11 cos� + �23 sin �� sin2|�| (Eq 18)

where �− � −(1)�+, and sin 2�+ −sin 2�− � 2 sin 2|�|.
The system of Eq 18 predicts a linear variation of a1 (��)

versus sin2 � and a2 (��) versus sin 2|�|. These data are ob-
tained over a range ±� at three different � angles (0°, 45°, and
90°). The six unknown strains can be obtained by solving the
system of Eq 18 at � � 0°, 45°, and 90°. The resulting stresses
can then be determined using Hook’s law, then the Von Mises
effective stress is calculated from the stress components. XRD
patterns were obtained using a PW3040 type diffractometer
(Philips, Mahwah, NJ) with a PW3050/�-2� type goniometer
operating at 40 kV and 55 mA.

Fig. 2 Definition of the laboratory coordinate system L, sample co-
ordinate system S, and the angles � and � Fig. 3 Diffraction plots for the Ti-47Al-2Ta matrix
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4. Results and Discussion

4.1 X-ray Results

Using a 2� scan, all of the important peaks and their relative
intensities were measured for the Ti-47Al-2Ta matrix. From
these patterns the unknown interplanar spacing of the crystal
planes was determined. The diffractometer is able to measure
when 2� lies between 0° and 150°. An x-ray scan, including all
angles that were possible to be measured on the diffractometer,
was taken for the Ti-47Al-2Ta matrix to determine the peaks
and their relative intensities.

For the calculation of residual stress, the measurements of
the interplanar spacing d should be taken at a peak with rela-
tively high angle and a well-defined peak. From Fig. 3, it is
clear that the peak at 79.3°, representing the plane [311] in the
�-phase of the material, fits these criteria. The peaks with a
greater 2� values lack both the high intensity and the well-
defined peak. The selected peak is known to exist in titanium
aluminide. To determine all components of stress, nine angles
of � (0°, ±15.34°, ±21.97°, ±27.34°, and ±32.01°) were mea-
sured at each of three angles of � (0°, 45°, 90°); hence there are
27 pairs of (�,�) angles. The d spacing was measured at 27
points (nine values of � and three values of �) for each speci-
men. The six unknown strains can be obtained by solving the
following set of equations,[6]

a1��,� = 0� = �33, a1�� = 0,�� = �11 − �33, a1�� = 45,��

=
1

2
��11 + 2�22 − 2�33�

a1�� = 90,�� = �22 − �33,
a2�� = 0,��

sin|2�| = �13,
12�� = 90,��

sin|2�| = �23

(Eq 19)

The behavior of a1 (�,�) versus sin2 � is simulated in Fig. 4,
whereas a2 (�,�) versus sin|2�| is presented in Fig. 5. Both
figures are used to find the six unknown strains. Once the strain
components are obtained, Hook’s law is used to calculate the
residual stresses. The resulting Von Mises stresses at different
time-temperature cycles are shown in Fig. 6. The error in cal-

culating the effective stress based on the errors within the 2�
angle measurement is calculated to be ∼20 MPa.

The residual stress attained its highest value in the hot iso-
statically pressed sample. The stress of the specimen that was
heat treated at 593 °C steadily decreased over the hot isostati-
cally pressed sample residual stress as the time increased. The
same trend was observed at 815 °C.

However, at a heat treatment temperature of 982 °C, the
stress decreases from the hot isostatically pressed value after
100 h, and then increases slightly with an increase in time. It
was observed that the increase in time of heat treatment re-
sulted in a decrease in residual stress up to a transitional tem-
perature, beyond which the stress increases as the duration of
heat treatment was increased. For the present analysis, this
temperature was estimated between 815 and 982 °C.

4.2. Results of Concentric Cylinder Model

When the thermal stresses are large enough, the matrix will
creep. The proposed concentric cylinder model was applied to

Fig. 4 a1 (�,�) versus sin2 �. Ti 47Al-2Ta reinforced with Saphikon
fiber heat treated at 815 °C for 100 h.

Fig. 5 a2 (�,�) versus sin 2|�|. Ti 47Al-2Ta reinforced with Saphi-
kon fiber heat treated at 815 °C for 100 h.

Fig. 6 Von Mises stress measures in Ti-47Al-2Ta reinforced with
Saphikon fibers after heat treatment. Results are plotted with as-hot
isostatically pressed (HIP’d) sample.
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Saphikon-Ti-47Al-2Ta composite. The materials constants
used in the model are presented in Table 1. The initial sample
was heated to 1100 °C, then quenched to room temperature.
Equations 14 and 15 were used to find the normalized hoop and
radial components of the residual stress, respectively. The
simulation was done for different cooling rates that were
achieved through different time cycles. The effective stress for
three different cycles is shown in Fig. 7. If the stress values at
each of the temperatures 593, 815, and 983 °C are taken, then
Eq 14 and 15 are used for the cooling cycle from each tem-
perature back to room temperature, one obtains the residual
stress values after an entire cycle of heating to 1100 °C, then
quenching to room temperature, then heating to 593, 815, and
983 °C and then cooling to room temperature at different time
cycles.

The results of the final effective stresses after a full cycle for
each temperature-time history are simulated in Fig. 8. It is well
known that some of the materials parameters will change
throughout the temperature range, namely K, Q, and � values.
The transient values of those parameters were calculated via
extrapolation at different temperatures. Using Norton’s creep
law with power of n � 5 produced five different solutions of
the ODE in Eq 13. The maximum numerical value of those five
solutions was chosen throughout the simulation.

From the results of Fig. 8, the predicted matrix stress
throughout the different time-temperature cycles are fairly
close to the experimental values obtained by XRD measure-
ments shown in Fig. 6. Similar to the results of Dixon[24] and
Ghonem,[25] thermal cycling of a metal matrix composite can
change the room-temperature residual stresses from those pre-
dicted after processing. Comparing the experimental measure-
ments to the values obtained via the model, the experimental
measurements are slightly higher than the predicted values be-
cause the set of material constants does not account for either
the phase change or matrix cracking, as shown in Fig. 9.

Despite the difference in the values of the residual stress
between the experimental measurement and the numerical
model, both results share the same trend. That is, large amounts
of plastic deformation will result in a relaxation of the residual
stress values. The process of heat treatment can complicate the
relaxation of the residual stresses by introducing an annealing
process in the matrix that in turn results in the decrease in
reaching higher stresses upon the cooling part of the cycle. The
experimental and simulation results indicate that the heat treat-

ment at higher temperature resulted in a possible decrease in
residual stress. However, the residual stress increased as the
time of the heat treatment increased. This can be explained in
the model by considering the plastic deformation, where an
increase in the time interval or temperature will result in higher
plastic strain. It was noted from Fig. 6 and 8 that below some
transitional temperatures, the residual stress decreased.

5. Conclusions

The present analysis shows that a combination of a simple
constitutive law (Norton’s creep law) with a thermoelastic
analysis of a concentric cylinder can yield interesting results
even if the detailed material data are not available. The essence
of classic viscoplastic behavior that dominates the composite
behavior at higher temperature was kept intact. The proposed
equation is similar in nature to typical creep power law, but the

Fig. 7 Effective stress through different time cycles using concentric
cylinder model

Fig. 8 Effective residual stress for matrix following Eq 14 and 15.
The simulation was done for three temperatures at different time pe-
riods (cooling rates). Results are plotted with as-hot isostatically
pressed sample residual stress.

Fig. 9 Microcracks detected in the Ti-47Al-2Ta matrix due to ther-
mal residual stresses
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coefficients of this equation have been replaced with expres-
sions involving the time and temperature ratios. The experi-
mental data obtained by XRD showed that the residual stress in
the Ti-47Al-2Ta matrix could be adjusted by low-temperature
treatment and subsequent reheating to certain temperatures at
different time periods (different cooling rates). Hypothetically,
with a proper choice of temperature and time combinations, the
average residual stresses can be significantly reduced. The pro-
posed model depicted the same trend of the existence of an
optimal temperature below which the stress decreases linearly
and above which the stress begins to increase again. For the
composite used in this study, such an optimal temperature is
argued to be in the range 815-982 °C.
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